Abelian Étale Coverings of Modular Curves over Local Fields

ثبت نشده
چکیده

We relate a part of the abelian étale fundamental group of curves over local fields to the component group of the Néron model of the jacobian. We apply the result to the modular curve X0(p)/Qp to show that the unramified abelian covering X1(p) → X0(p) (Shimura covering) uses up all the possible ramification over the special fiber of X0(p).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian Étale Coverings of Curves over Local Fields and Its Application to Modular Curves

We give a geometric bound of a part of the abelian étale fundamental group of curves over local fields, in particular in the case of bad reduction. We apply the result to the modular curve X0(p)/Qp to show that the unramified abelian covering between X1(p) → X0(p) (Shimura covering) uses up all the possible ramification over the special fiber.

متن کامل

Abelian Étale Coverings of Modular Curves over Local Fields

We relate a part of the abelian étale fundamental group of curves over local fields to the component group of the Néron model of the jacobian. We apply the result to the modular curve X0(p)/Qp to show that the unramified abelian covering X1(p) → X0(p) (Shimura covering) uses up all the possible ramification over the special fiber of X0(p).

متن کامل

A family of étale coverings of the affine line

This note was inspired by a colloquium talk given by S. S. Abhyankar at the Tata Institute, on the work of Abhyankar, Popp and Seiler (see [2]). It was pointed out in this talk that classical modular curves can be used to construct (by specialization) coverings of the affine line in positive characteristic. In this “modular” optic it seemed natural to consider Drinfel’d modular curves for const...

متن کامل

Introduction to Drinfeld Modules

(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary quadratic fields). Here global function field means Fp(T ) or a finite extension. (2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play the role of Shimura varieties). (3) Modular...

متن کامل

Rational Points on Atkin-Lehner Quotients of Shimura Curves

We study three families of Atkin-Lehner quotients of quaternionic Shimura curves: X, X 0 (N), and X D+ 1 (N), which serve as moduli spaces of abelian surfaces with potential quaternionic multiplication (PQM) and level N structure. The arithmetic geometry of these curves is similar to, but even richer than, that of the classical modular curves. Two important differences are the existence of a no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004